As smartphone cameras become more capable, technical photography jargon is slipping into mainstream conversations. An “f-stop” (or “f-number”) is a word you’re going to see more as smartphone manufacturers try to one-up each other when bragging about specs. Here’s what you need to know.

Aperture and the Exposure Triangle

Aperture is one of the three legs of the exposure triangle, along with shutter speed and ISO. It’s a measurement of how wide the hole is at the front of a lens and, thereby, how much light it allows in. Shutter speed measures how long light is allowed to hit the sensor and ISO measures how sensitive the sensor is.

While shutter speed is measured somewhat intuitively in fractions of a second, aperture is measured in f-stops, such as f/1.6, f/11, and f/22. Most lenses allow you to adjust the f-stop, although smartphone cameras are an exception; they have a fixed aperture. Lowering the f-stop makes images brighter, while increasing it makes them darker.

But how does it do this?

RELATED: What Is Aperture?

F-Stops Simplified

The f-stop is the ratio of the focal length of a lens to the lens aperture (the hole through which the light enters). So, an f-stop of 2 (f/2) means the lens aperture is half the focal length. In a lens with a focal length of 100mm, the aperture would be 50mm (100/50 = 2); in a lens with a focal length of 200mm, the aperture would be 100mm (200/100 = 2).

An f-stop is measured as a ratio due to some of the fun quirks in the physics of optics.

The wider the aperture of a lens is, the more light it allows through. This makes the image it projects on the film plane—or, realistically, the digital sensor—brighter. So, the lower the f-number, the brighter the image.

However, lenses with longer focal lengths have narrower fields of view. That’s why the images they project are relatively larger and spread the light thinner. The way the effects balance out means the ratio of focal length to the aperture (or f-number) creates photos that are equivalently bright with all lenses. It ignores any differences in light transmission.

For example, say you’re taking a photo of a tree. If you use a 100mm lens at f/2, the aperture will be 50mm wide. If you use a 200mm lens at f/2, the aperture will be 100mm wide. Both photos, however, will be just as bright.

This is because even though the 200mm lens has an aperture that’s twice as wide (and thus, four times as large), its field of view is half that of the 100mm lens. Therefore, it has to project everything four times larger on the sensor, so the two effects cancel each other out.

F-Stops in Photography

Now that we’ve covered the technical details, let’s look at how f-stops apply in practical photography.

Taking a photo involves balancing the aperture, shutter speed, and ISO. You want enough light to hit the sensor so it records the scene properly, but not so much that it’s too dark (underexposed) or bright (overexposed).

The amount of light that hits the sensor is measured in a dimensionless quantity called a “stop.” Increasing the exposure (the brightness of the photo) by one stop means you double the amount of light hitting the sensor. (Other things that affect exposure, like image stabilization, are also measured in stops.)

There are a few ways you can do this. One method is to allow light to hit the sensor for a longer amount of time, such as using a shutter speed of 1/50 of a second instead of 1/100. You could also just use a wider aperture, but this comes with some trade-offs.

In addition to allowing in more light, images shot with a wider aperture have less depth of field, meaning more of the scene will be out of focus. Sometimes, such as when shooting a portrait, this is desirable. Other times, it’s a problem you have to work around.

To make matters even more confusing, aperture isn’t measured on a linear scale. F-stops are logarithmic. In other words, going from f/4 to f/2 doesn’t double the amount of light entering the camera, it quadruples it. To double the amount of light, you’d need to go to f/2.8.

Yes, that’s a lot of information to process. Fortunately, though, because smartphones have fixed aperture lenses, you don’t have to fully understand this to use them effectively (more on this below).

However, if you also use a dedicated camera, you might want to learn more about how you can use aperture creatively in photography.